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Abstract

Two methods have been reported by Zhu and Law to identify moving loads on the top of a bridge deck.
One is based on the exact solution (ESM) and the other is based on the finite element formulation (FEM).
Simulation studies on the effect of different influencing factors have been reported previously. This paper
comparatively studies the performances of these two methods with experimental measurements obtained
from a bridge/vehicle system in the laboratory. The strains of the bridge deck are measured when a model
car moves across the bridge deck along different paths. The moving loads on the bridge deck are identified
from the measured strains using these two methods, and the responses are reconstructed from the identified
loads for comparison with the measured responses to verify the performances of these methods. Studies on
the identification accuracy due to the effect of the number of vibration mode used, the number of measuring
points and eccentricities of travelling paths are performed. Results show that the ESM could identify the
moving loads individually or as axle loads when they are travelling at an eccentricity with the sensors
located close to the travelling path of the forces. And the accuracy of the FEM is dependent on the amount
of measured information used in the identification.
r 2002 Elsevier Ltd. All rights reserved.

1. Introduction

Information of vehicular load on a bridge deck is essential to bridge design as it constitutes the
live load component in the bridge design code. Traditionally, the vehicular load was either
measured directly from an instrumented vehicle or computed from models of the bridge deck and
the vehicle. It would be very expensive and the results obtained are subjected to bias in the first
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approach, while the second approach is subjected to modelling errors. Systems have been
developed for weigh-in-motion of the vehicles, but they all measured only the static axle loads. All
the weigh-in-motion techniques treat the bridge and the vehicle in a two-dimensional problem. A
technique to estimate the vehicular loads from the vibration responses of the bridge deck is
required such that the different parameters of the bridge and vehicle system are accounted for in
the measured responses, and the cost involved would be much less than that by direct
measurement.
In recent years, several techniques have been reported on moving force identification. These

methods can be categorized into two groups. One group of methods is based on the exact solution
and system identification theory, such as the time domain method (TDM) [1], and the frequency-
time domain method (FTDM) [2]. The results obtained from these methods are noise sensitive and
they exhibit large fluctuations at the beginning and the end of the time histories. It is difficult to
use these methods to identify vehicular loads with multiple axles or vehicles on multi-span
continuous bridge due to the long computational time and large computer capacity. Most
of the computational time is spent on the computation of the system matrices. Therefore, a new
time domain method based on regularization technique is developed to identify moving loads on
bridge deck from the measured structural vibration responses [3]. The method gives exact
solutions to the forces with improved formulation over existing methods for a more efficient
computation.
Another group of methods is based on finite element formulation, such as the interpretive time

domain method ITM-I [4], ITM-II [5], and the optimal state estimation approach [6]. ITM-I
reconstructs the dynamic wheel loads from the bridge strains. The bridge deck is modelled as an
assembly of lumped masses interconnected by massless elastic beam elements, not necessarily of
the same length. The measured or total responses are caused by the inertial or D’Alembert’s forces
and the damping forces. ITM-II uses the Euler’s equation for beams to model the bridge deck in
the interpretation of dynamic loads crossing the deck. The optimal state estimation approach is
based on finite element formulation and dynamic programming technique. This method provides
bounds to the identified forces in solving the ill-conditioned problem in the time domain using
different combinations of measured responses in both simulation and laboratory studies. The
computational time of ITM [7] is not long compared with TDM and FTDM, but the
identification accuracy is much lower. Large errors in the identified results from ITM are induced
by the direct derivation of the bridge modal responses. A general method based on the finite
element formulation has been developed to overcome this deficiency [8]. A generalized orthogonal
function approach is proposed to obtain the derivatives of the bridge modal responses. The
moving loads are identified using least-squares method with regularization on the equation of
motion in time domain.
The robustness and accuracy of the methods developed by Zhu and Law [3,8] have never been

compared before. In the following comparative studies, the bridge deck is modelled as an
orthotropic plate and the vehicular load is modelled as a group of four wheel loads or two axle
loads moving on top of the bridge deck at fixed spacing. Dynamic behavior of the bridge deck is
analyzed by the orthotropic plate theory and mode superposition technique. Tikhonov
regularization technique is used to provide bounds to the identified forces. The theories of these
methods and findings from previous studies are briefly described below followed by the
comparison using laboratory measurements.
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1.1. Findings on the two methods from previous research

The identification method based on an exact solution (ESM) [3] can identify individual loads
from the measured strains and accelerations of the supporting structure. Acceleration
measurements would provide better results than those from strain measurements. Identification
of forces moving along an eccentric path is slightly less accurate than that for forces moving along
the center line of the bridge deck when the sensors are around the middle of the bridge cross-
section. When the force traverses mid-span of the beam, the responses from the second
longitudinal modes are smallest at this moment, and this affects the strain measurement and hence
the identified results greatly. Large errors are found at the beginning and the end of the time
histories of the identified forces. This is due to the discontinuity of the forces at these two points
leading to large fluctuations in the identified results. When the responses of the bridge deck are
dominated by vibration modes along the longitudinal axis, a beam model instead of a plate model
may be accurate enough in the identification.
In the numerical study of the finite element formulation (FEM) [8], the torsional modes are

found very important in the moving load identification even when the group of loads is moving
along the centerline of the bridge deck. The impulsive response components in the acceleration
responses are large in the high-frequency range, and higher sampling frequency and more modes
should be used in the moving load identification using measured accelerations.
Detailed discussions and simulation results on the two methods are referred to Refs. [3,8]. The

performances of these methods are further studied in this paper with an experimental set-up of a
bridge/vehicle system in the laboratory. The strains of the bridge deck are measured when a model
car moves across the bridge deck along different eccentric paths. The moving loads on the bridge
deck are identified from the measured strains using these methods, and the responses are
reconstructed from the identified loads for comparison with the measured responses to verify
the performances of these methods. The parameters affecting the identified results, such as the
number of vibration modes in the structural responses, number of measuring points and the load
eccentricities are studied experimentally. The exact solution method is found better than the finite
element method, and the accuracy of the latter is dependent on the amount of measured
information used in the identification. In addition, the exact solution method can give accurate
estimates on the loads moving at a large eccentricity if the sensors are placed close to the loads.

2. Moving loads identification theory

2.1. Equation of motion of the orthotropic bridge deck

A group of moving loads is moving at the same speed on top of an orthotropic plate as shown
in Fig. 1. The plate is simply supported along x ¼ 0 and a with the other two edges free. The
equation of motion of the damped orthotropic plate under the group of moving loads can be
written as

Dx
@4w

@x4
þ 2Dxy

@4w

@x2@y2
þ Dy

@4w

@y4
þ C

@w

@t
þ rh

@2w

@t2
¼

XNp

l¼1

plðtÞdðx � #xlðtÞÞdðy � #ylðtÞÞ; ð1Þ
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where fplðtÞ; l ¼ 1; 2;y; Npg are the moving loads and they are moving as a group at a fixed
spacing. ð #xlðtÞ; #ylðtÞÞ is the position of the moving load plðtÞ: dðxÞ; dðyÞ are the Dirac function. By
modal superposition, the displacement of the orthotropic plate can be written as follow:

wðx; y; tÞ ¼
X
m;n

Wmnðx; yÞqmnðtÞ; ð2Þ

whereWmnðx; yÞ ¼ YmnðyÞ sinðmpx=aÞ is the mode shape of the orthotropic plate, and qmnðtÞ is the
corresponding modal co-ordinate. The mode shapes and natural frequencies are determined by
the method in Ref. [3].
Substituting Eq. (2) into Eq. (1) results in

.qmnðtÞ þ 2zmnomn ’qmnðtÞ þ o2ijqmnðtÞ

¼
2

rha
R b

0 Y 2
mnðyÞ dy

XNp

l¼1

plðtÞYmnð #ylðtÞÞsin
mp
a

#xlðtÞ
� �

ðm; n ¼ 1; 2;yÞ; ð3Þ

where zmn ¼ C=2rhomn; and a, b are the dimensions of the orthotropic plate in x and y directions,
respectively. Eq. (3) can be solved in the time domain by the convolution integral with the plate
initially at rest, yielding

qmnðtÞ ¼
1

Mmn

Z t

0

Hmnðt � tÞfmnðtÞ dt; ð4Þ

where

Mmn ¼
rh a

2

Z b

0

Y 2
mnðyÞ dy;

HmnðtÞ ¼
1

o0
mn

e�zmnomnt sinðo0
mntÞ; tX0;

fmnðtÞ ¼
XNp

l¼1

plðtÞYmnð #ylðtÞÞ sin
mp
a

#xlðtÞ
� �

;

o0
mn ¼ omn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2mn

q
: ð5Þ
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Fig. 1. An orthotropic plate subject to action of moving loads.
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Substituting Eq. (4) into Eq. (2), the displacement of the orthotropic plate at point (x, y) and time
t can be found, as

wðx; y; tÞ ¼
XN
m¼1

XN
n¼1

YmnðyÞsin
mp
a

x
� � 1

Mmn

Z t

0

Hmnðt � tÞfmnðtÞdt: ð6Þ

2.2. Moving load identification based on exact solution

The strains under the orthotropic plate at point (x, y) and time t are

exðx; y; tÞ ¼ zt

XN
m¼1

XN
n¼1

mp
a

� �2
YmnðyÞ sin

mp
a

x
� � 1

Mmn

Z t

0

Hmnðt � tÞfmnðtÞ dt;

eyðx; y; tÞ ¼ � zt

XN
m¼1

XN
n¼1

Y 00
mnðyÞ sin

mp
a

x
� � 1

Mmn

Z t

0

Hmnðt � tÞfmnðtÞ dt; ð7Þ

where exðx; y; tÞ; eyðx; y; tÞ are the strains at the bottom surface of the plate along x and y
directions, respectively, and zt is the distance from the neutral flexural plane to the bottom tension
surface. The strains at measuring point (xs; ys) can be written in discrete form including the
MM 	 NN modes along the x and y directions respectively.

exðxs; ys; mmÞ ¼ zt

XMM

m¼1;

XNN

n¼1

mp
a

� �2
YmnðysÞ sin

mp
a

xs

� � 1

Mmn

Xmm

k¼0

Hmnðmm � kÞfmnðkÞ Dt;

eyðxs; ys; mmÞ ¼ � zt

XMM

m¼1;

XNN

n¼1

Y 00
mnðysÞ sin

mp
a

xs

� � 1

Mmn

	
Xmm

k¼0

Hmnðmm � kÞfmnðkÞDt ðs ¼ 1; 2;y; Ns; mm ¼ 1; 2;y; NÞ; ð8Þ

where Dt is the time step; (N+1) is the number of sampling points; Ns is the number of measuring
points, and

HmnðkÞ ¼
1

o0
mn

e�zmnomnkDt sinðo0
mnkDtÞ;

fmnðkÞ ¼
PNp

l¼1 plðkDtÞYmnð #ylðkDtÞÞ sin
mp
a

#xlðkDtÞ
� �

ðm ¼ 1; 2;y; MM; n ¼ 1; 2;y; NNÞ:

ð9Þ

Eq. (8) is rewritten in matrix form (Only the x direction strains are presented since those for
the y direction strains are similar.)

ex ¼ BP: ð10Þ
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where ex is a ðN * NsÞ 	 1 matrix; B is a ðN * NsÞ 	 ðN * NpÞ matrix and P is a ðN * NpÞ 	 1
matrix.

ex ¼ fexðx1; y1; 1Þ; exðx2; y2; 1Þ;y; exðxNs
; yNs

; 1Þ; exðx1; y1; 2Þ;y; exðxNs
; yNs

; NÞgT;

P ¼ fp1ð0Þ; p2ð0Þ;y; pNp
ð0Þ; p1ð1Þ;y; pNp

ðN � 1ÞgT;
ð11Þ

B ¼

B10 0 ? 0

B20 B21 ? 0

^ ^ ^ ^

BN0 BN1 ? BNN�1

2
6664

3
7775
ðNs
NÞ	ðNp
NÞ

; Bmmk ¼

b11 b12 ? b1Np

b21 b22 ? b2Np

^ ^ ^ ^

bNs1 bNs2 ? bNsNp

2
66664

3
77775

Ns	Np

ð12Þ

bsl ¼ ztDt
XMM

m¼1

XNN

n¼1

1

Mmno0
mn

mp
a

� �2
YmnðysÞ sin

mp
a

xs

� �
e�zmnomnðmm�kÞDt sinðo0

mnðmm � kÞDtÞ

Ymnð #ylðkDtÞÞ sin
mp
a

#xlðkDtÞ
� �

ðmm ¼ 1; 2; 3;y; N; k ¼ 0; 1; 2;y; N � 1; s ¼ 1; 2;y; Ns; l ¼ 1; 2;y; NpÞ:

Since the identified force P is not a continuous function of the measured data, a regularization
method developed by Tikhonov [9] is used to solve this ill-posed problem [10]. The load
identification problem can be formulated as the following damped least-squares problem.

minJðP; lÞ ¼ ðex � BP; Rðex � BPÞÞ þ lðP; PÞ; ð13Þ

where l is a non-negative regularization parameter in the form of a diagonal matrix. R is a weight
matrix determined from the measured information [11], and the first term in bracket on the right-
hand is the Euclidean norm. Generalized cross-validation method [12] and L-curve method [13]
are then used to determine the optimal regularization parameter in this study.

2.3. Moving load identification based on FEM

The strain exðxs; ys; tÞ at location ðxs; ysÞ and at time t is rewritten in matrix form from Eq. (7)
as

exðxs; ys; tÞ ¼WsQ ðs ¼ 1; 2;y; NsÞ; ð14Þ

where Ns is the number of measuring points, and Q is a matrix of qijðtÞ from Eq. (4).

Ws ¼ W11ðxs; ysÞ; W12ðxs; ysÞ;y; W1nðxs; ysÞ; W21ðxs; ysÞ;y; Wmnðxs; ysÞf g;

and the modal strains in x direction can be written as

Wijðxs; ysÞ ¼ �zt

ip
a

� �2
sin

ip
a

xs

� �
YijðysÞ; ði ¼ 1; 2;y; m; j ¼ 1; 2;y; nÞ:

where zt is the distance from the measuring point at the bottom tension surface to the neutral
plane of bending. For Ns measuring points

ens ¼WnsQ; ð15Þ
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where

ens ¼ exðx1; y1; tÞ; exðx2; y2; tÞ;y; exðxNs
; yNs

; tÞ
� �T

Wns ¼

W11ðx1; y1Þ W12ðx1; y1Þ ? Wmnðx1; y1Þ

W11ðx2; y2Þ W12ðx2; y2Þ ? Wmnðx2; y2Þ

^ ^ ? ^

W11ðxNs
; yNs

Þ W12ðxNs
; yNs

Þ ? WmnðxNs
; yNs

Þ

2
6664

3
7775

Ns	m � n

:

The modal displacement can be obtained from Eq. (15) by least-squares method as

Q ¼ ðWT
nsWnsÞ

�1WT
nsens: ð16Þ

Since the displacements or strains are measured, the velocities and accelerations can be
obtained by the orthogonal polynomial method described in Ref. [14], and the modal velocities
and accelerations are calculated by the least-squares method from Eq. (16). They are then
substituted into Eq. (3) to form the matrix equation

B ¼ SP; ð17Þ

where

B ¼

.q11ðtÞ þ 2z11o11 ’q11ðtÞ þ o211q11ðtÞ

.q12ðtÞ þ 2z12o12 ’q12ðtÞ þ o212q12ðtÞ

^

.qmnðtÞ þ 2zmnomn ’qmnðtÞ þ o2mnqmnðtÞ

8>>><
>>>:

9>>>=
>>>;
; P ¼ p1ðtÞ; p2ðtÞ;y; pNp

ðtÞ
� �T

;

S ¼

2sin
p
a
#x1ðtÞÞY11ð #y1ðtÞ

� �

rha
R b

0 Y 2
11ðyÞ dy

2sin
p
a
#x2ðtÞÞY11ð #y2ðtÞ

� �

rha
R b

0 Y 2
11ðyÞ dy

?
2sin

p
a
#xNp

ðtÞÞY11ð #yNp
ðtÞ

� �

rha
R b

0 Y 2
11ðyÞ dy

2sin
p
a
#x1ðtÞÞY12ð #ylðtÞ

� �

rha
R b

0 Y 2
12ðyÞ dy

2sin
p
a
#x2ðtÞÞY12ð #y2ðtÞ

� �

rha
R b

0 Y 2
12ðyÞ dy

?
2sin

p
a
#xNp

ðtÞÞY12ð #yNp
ðtÞ

� �

rha
R b

0 Y 2
12ðyÞ dy

^ ^ ? ^

2sin
mp
a

#x1ðtÞÞYmnð #ylðtÞ
� �

rha
R b

0 Y 2
mnðyÞ dy

2sin
mp
a

#x2ðtÞÞYmnð #y2ðtÞ
� �

rha
R b

0 Y 2
mnðyÞ dy

?
2sin

mp
a

#xNp
ðtÞÞYmnð #yNp

ðtÞ
� �

rha
R b

0 Y 2
mnðyÞ dy

2
66666666666666664

3
77777777777777775

: ð18Þ

The moving load P can be obtained by the straightforward least-squares method from Eq. (17).
But the solutions are frequently unstable in the sense that small noises in the responses would
result in large changes in the predicted moving force. The regularization technique is again utilized
to improve the conditioning of the problem.
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3. The laboratory model

The experimental system design includes the model design and measuring system design. The
experimental model simulates the vehicle/bridge interaction of a vehicle–bridge system. The one-
tenth scale model bridge deck simulates the single span bridge deck of Fafard and Savard [15].
According to the similarity rules, the length and width of the model are selected as 2.44 and
1.22m, respectively. The beam-slab-type bridge deck is modelled by five rectangular section steel
beam ribs with a steel plate on top. According to AASHTO [16] specifications on vehicles-type
H20-44 or H15-44, the ratio of the wheel spacing and the axle spacing and the ratio between the
front axle and the rear axle weights are selected as 3:7.
The final model vehicle/bridge system fabricated in the laboratory is shown diagrammatically in

Fig. 2. The bridge deck consists of a uniform steel plate 2.44m	 1.22m	 6.35mm thick stiffened
with five rectangular ribs (25mm	 12.7mm) welded underneath the plate and simply supported
at the ends. The bridge deck is supported on two steel I-beams which are fixed to the ground
through bolts. Spherical metal balls are placed in between the I-beams and the ends of beam rib of
the bridge deck to simulate the point supports. At the entrance end of the deck, metal balls are
welded connecting both the I-beams and the ribs along the axis of rotation. However, at the exit
end, the metal balls are welded on the ribs only.
Three U-shaped aluminum sections are glued to the upper surface of the deck as direction

guides for the car. It is located at 1/8b, 3/8b and 1/2b measured from the right edge of the deck as
shown in Fig. 3(c), and b is the width of the deck. The model car is pulled along the guide by a
string wound around the drive wheel of an electric motor. During the test, a leading beam and a
tailing beam are provided for the acceleration and deceleration of the model car as shown in
Fig. 2. The leading beam and tailing beam are independently supported on the ground, and
therefore there is no excitation to the bridge deck as the model car moves on the top of them.
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The model car has four rubber wheels with an axle spacing of 0.457m and wheel spacing of
0.2m. The front and the rear axles weigh 5.2 and 14.7 kg, respectively. The mass ratio between the
model car and the bridge deck is 0.12. The ratio between the wheel spacing and the axle spacing is
0.44. Two steel studs are protruding from the bottom of the car to guide the car moving along the
rail. Moreover, a trigger arm is extended from the car for detecting the car location and the
moving speed as shown in Fig. 2.
Nine photoelectric sensors are mounted evenly in a line on the deck to monitor the speed

of the car. They are located longitudinally on the plate at roughly equal spacing of
300mm to check on the uniformly of the speed as shown in Fig. 3(a). Twenty strain
gauges are located at the bottom of the beam ribs to measure the responses of the plate.
Their locations are shown in Fig. 3(b). A 16-channel data acquisition system DASP-INV303E
and a KYOWA data tape recorder model RTP800A are used for data collection in the
experiments.
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4. Experimental program

The testing procedure consists of four main steps. The model bridge deck is first calibrated with
static loads. Loads from 0 to 30 kg are added in increments to the middle point of the three rails in
turn. The corresponding strain values at the measuring points are recorded. The strains at the
measuring points under these loads are also calculated using the finite element software package
SAP2000. Comparison between the measured and calculated strains gives the sensitivity
coefficients (calibration factors) for each of these measuring point.
Next, the vibration mode shapes of the bridge deck and the model car are obtained from modal

test. Table 1 shows the identified frequencies and the damping ratios of the bridge deck, and Fig. 4
show the first 12 mode shapes of the bridge deck. Fig. 5 shows the first four mode shapes of the
model car. According to Bakht and Jaeger [17], the rigidities of the equivalent orthotropic
plate are found to be Dx ¼ 7:3677	 104 Nm; Dy ¼ 4:2696	 103 Nm; Dxy ¼ 8:6018	 103 Nm:
The natural frequencies of the plate are calculated by the method given in Ref. [3], and they
are compared with the measured natural frequencies of the bridge deck and those from the finite
element computation as shown in Table 2. The measured frequencies are close to those from finite
element computation and from the formulation given above. This shows that the bridge deck can
be approximately modelled by the orthotropic plate theory.
In the third step, the responses of the bridge deck are measured when the model car moves

along different rails. The sampling frequency is 1000Hz with anti-aliasing filters, and the number
of data in each recorded segment is 7680.
Finally, the moving loads on the bridge deck are identified from the measured strain responses

using both the exact solution and finite element methods, and they are compared with the static
loads. Two types of identification are performed, i.e., the forces are identified as two axle forces or
as four individual wheel loads. And the effect of different measured information, the eccentricity
of the moving path of the car and the number of structural vibration modes on the identification
accuracy are studied.
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Table 1

The measured natural frequencies and damping ratios of the bridge deck

Mode No. Frequency (Hz) Damping (%)

1 9.416 0.688

2 12.763 0.220

3 27.009 0.254

4 34.901 0.261

5 38.455 0.172

6 49.769 0.129

7 61.648 0.352

8 67.206 0.271

9 70.456 0.266

10 73.199 0.336

11 76.601 0.334

12 79.942 0.499

13 86.096 0.195

Note: Response type: acceleration.

X.Q. Zhu, S.S. Law / Journal of Sound and Vibration 268 (2003) 855–879864



5. Axle load identification from bridge strains

Nine of the vibration modes (m ¼ 3; n ¼ 3) shown in Table 2 and the strains at nine and fifteen
measuring points are used in the identification. (m ¼ i; n ¼ j) denotes the mode number (m, n) with
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Fig. 4. Vibration mode shape of bridge deck. The left end is where the car enters the deck.
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(m ¼ 1; 2;y; i) or (n ¼ 1; 2;y; j). The measured signals are re-sampled with anti-aliasing filters
in front to have a time interval of 0.005 s to reduce the computation time at the expense of
accuracy. As the model car is moving along the central line (Rail 3), Rail 1 or Rail 2 in turn, the
strains at 1/4a, 1/2a and 3/4a of each beam are used to identify the moving loads. Methods on the
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Fig. 5. Vibration mode shapes of car. The left end is the front end of car.

Table 2

Natural frequencies of the bridge deck and model car (Hz)

M 1 2 3

n 1 2 3 4 1 2 3 1 2 3

Deck

Test 9.42a 12.76 27.01 70.46 34.90a 38.46 49.77 73.20a 76.71 86.12

FEM 9.13a 12.10 28.10 63.70 36.30a 39.30 52.80 80.40a — —

Proposed method 9.27a 12.89 29.65 65.35 37.14a 41.15 56.41 83.58a 87.65 102.07

Mode no. of car 1 2 3 4

Freq. (Hz) 27.04 44.22 58.74 87.38

Note: FEM gives results from finite element computation.
aThe longitudinal bending mode.
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selection of optimal sensor locations are available [18] basing on the sensitivity of the sensor
locations to the measured responses. In the present study, five sensor sets shown in Fig. 6 are used
for a comparative study on the effect of sensor location selection. Sensor set I consists of the nine
measured strains from the three beams on the left. Set II consists of the nine measured strains
from the middle three beams, and set III consists of the nine measured strains from the three
beams on the right. Sensor set IV consists of the measured strains from Beams 1, 3 and 5, and
sensor set V consists of the measured strains from all the five beams.

5.1. Study 1: effect of number of modes

The model car moves along Rail 3 at a speed of 1.1079m/s. Signals from sensor set V is used in
the identification. Table 3 shows the correlation coefficients between the reconstructed and
measured strains at 3/8a on the five beams. Fig. 7 shows the identified axle loads from nine modes
(m ¼ 3; n ¼ 3) using these two methods for comparison. In the finite element method, fifty terms
in the orthogonal functions are used to approximate the measured strains.
The identified axle loads from using the two methods are close to the static loads and the

correlation coefficients between the reconstructed and measured strains at 3/8a on each beam are
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Sensor Set I

Sensor Set II

Sensor Set III

Sensor Set IV

Sensor Set V

Rail3 Rail2 Rail1

1/2b

3/8b

1/8b

Fig. 6. Sensor sets for moving load identification.

Table 3

Correlation coefficients at 3/8a on the five beams

Method Modes Correlation coefficients

Beam 1 Beam 2 Beam 3 Beam 4 Beam 5

ESM 3;3;3 0.979 0.982 0.960 0.979 0.950

4;3;2 0.982 0.983 0.961 0.981 0.956

1;1;1 0.967 0.976 0.949 0.978 0.969

FEM 3;3;3 0.905 0.934 0.903 0.936 0.904

2;2;2 0.923 0.927 0.904 0.931 0.921

1;1;1 0.923 0.928 0.904 0.932 0.921

Note: 4;3;2 indicates four modes with m ¼ 1; three modes with m ¼ 2 and two modes with m ¼ 3:
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all over 0.9. This shows that both methods are effective to identify the moving vehicular axle
loads from bridge strains and acceptable results can be obtained. Also the time histories identified
from using the three longitudinal bending modes (m ¼ 3; n ¼ 1) are close to those from nine
modes (m ¼ 3; n ¼ 3). (They are not shown.) The axle loads can therefore be identified
approximately using an equivalent beam model when the vehicle is moving along the central line
of the bridge deck. Fig. 7 also indicates that the identified results using both methods are similar
when signals from sensor set V is used in the identification with FEM giving larger fluctuations
than ESM. The above discussions indicate that both methods are effective and accurate to identify
the dynamic axle loads in practice using different number of vibration modes with 15 measuring
points.

5.2. Study 2: effect of measuring location

The sensor sets and the parameters of the system are the same as above. Figs. 8 and 9 show the
identified loads from strains at different measuring points using the exact solution and finite
element methods, respectively, as the model car moves along Rail 3. The correlation coefficients
between the reconstructed and measured strains at 3/8a of the beams are shown in Tables 4 and 5.
Figs. 10 and 11 show the identified results with different sensor sets using the ESM as the model
car moves along Rails 2 and 1, respectively.
The exact solution method gives correlation coefficients above 0.9 as the model car is moving

along the central line (Rail 3) or Rail 2. But the correlation coefficients are very small as sensor
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Fig. 7. Identification of axle loads along Rail 3 using different methods (–, static forces; – –, using ESM; y, using

FEM). (a) The first axle load and, (b) the second axle load.

X.Q. Zhu, S.S. Law / Journal of Sound and Vibration 268 (2003) 855–879868



sets I or II is used with the model car moving along Rail 1. This may be because the measuring
points are far away from the moving model car, and they cannot pick up the dominating bending
modes whereas the torsional modal responses are small as found in Study 1. Fig. 11 shows the
extreme case with sensor set I as the model car moves along Rail 1. It is concluded that the
identified force time histories are satisfactory with different sensor sets when the car moves along
Rails 2 or 3.
The identified results are different with sensor sets I, II and III using the finite element method

as shown in Fig. 9. This shows that the performance of FEM is very dependent on the sensor
locations and on the amount of measured information, and more sensors should be used to
identify the moving loads. This observation is also supported by the correlation coefficients in
Table 5 which are in general poorer than those from the exact solution method in Table 4. The
results from the finite element method also exhibit unsatisfactory performance in identifying loads
moving along Rails 1 and 2 from sensor sets I to IV.

5.3. Study 3: effect of eccentricities

The following discussions refer to the results from the exact solution method shown in Figs. 8,
10 and 11 and in Table 4. The method is effective to identify the axle loads from measuring
strains, and acceptable results can be obtained. When either one of the sensor sets II, III or IV is
used in the identification, almost all the correlation coefficients between the reconstructed and
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Fig. 8. Identification of axle loads along Rail 3 using ESM (–, static forces; –, identified with set I; – –, identified with set

II; y, identified with set III). (a) The first axle load; (b) the second axle load and (c) the resultant load.
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Table 4

Correlation coefficient between reconstructed and measured strains at 3/8a using ESM

Sensor set Rail number Average speed (m/s) Correlation coefficients

Beam 1 Beam 2 Beam 3 Beam 4 Beam 5

I 1 1.09 0.009 0.009 0.079 0.083 0.094

2 1.09 0.938 0.975 0.957 0.947 0.976

3 1.11 0.976 0.959 0.927 0.958 0.942

II 1 1.09 0.072 0.862 0.902 0.909 0.891

2 1.09 0.955 0.980 0.960 0.950 0.975

3 1.11 0.971 0.961 0.930 0.956 0.931

III 1 1.09 0.154 0.900 0.976 0.983 0.957

2 1.09 0.958 0.977 0.955 0.946 0.970

3 1.11 0.965 0.948 0.915 0.946 0.926

IV 1 1.09 0.071 0.871 0.969 0.977 0.955

2 1.09 0.953 0.973 0.949 0.940 0.966

3 1.11 0.966 0.948 0.915 0.946 0.926

V 1 1.09 0.001 0.104 0.289 0.0286 0.281

2 1.09 0.911 0.976 0.969 0.961 0.980

3 1.11 0.979 0.982 0.960 0.979 0.950
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Fig. 9. Identification of axle loads along Rail 3 using EEM (–, static forces; –, identified with set I; – –, identified with

set II; y, identified with set III). (a) The first axle load; (b) the second axle load and (c) the resultant load.
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measured strains are all over 0.9 even when the model car is moving on Rail 1 or Rail 2 at an
eccentricity of 1/8b and 3/8b, respectively. The identified eccentric loads are close to that with no
eccentricity from sensor set II as shown in Fig. 12.
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Table 5

Correlation coefficient between reconstructed and measured strains at 3/8a using FEM

Sensor set Rail number Average speed(m/s) Correlation coefficients

Beam 1 Beam 2 Beam 3 Beam 4 Beam 5

I 1 1.09 0.067 0.002 0.036 0.036 0.013

2 1.09 0.409 0.613 0.632 0.650 0.649

3 1.11 0.887 0.936 0.914 0.931 0.881

II 1 1.09 0.036 0.372 0.812 0.900 0.896

2 1.09 0.677 0.842 0.876 0.883 0.884

3 1.11 0.725 0.753 0.715 0.764 0.718

III 1 1.09 0.016 0.253 0.494 0.604 0.625

2 1.09 0.588 0.756 0.761 0.767 0.800

3 1.11 0.621 0.743 0.742 0.739 0.631

IV 1 1.09 0.065 0.002 0.177 0.238 0.163

2 1.09 0.700 0.867 0.890 0.895 0.907

3 1.11 0.880 0.908 0.875 0.912 0.875

V 1 1.09 0.072 0.006 0.235 0.320 0.235

2 1.09 0.741 0.886 0.909 0.911 0.921

3 1.11 0.913 0.954 0.933 0.955 0.910
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Fig. 10. Identification of axle loads along Rail 2 using ESM (–, static forces; –, identified with set I; – –, identified with

set II; y, identified with set III). (a) The first axle load; (b) the second axle load and (c) the resultant load.
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From Fig. 11, the identified results from sensor set III is the largest and that from sensor set II is
larger than that from sensor set I as the model car moves along Rail 1. This is because sensor set
III is close to the moving loads and is more subject to the bending modes of the bridge deck, and
the signal to noise ratios of the measured strains are larger than that from sensor sets I or II. So
the identification from sensor sets I and II is over-smoothed and the identified results are smaller
than those from sensor set III.

6. Wheel load identification from bridge strains

6.1. Study 4: effect of measuring locations

The sensor sets and the parameters are the same as for the axle load identification. The first and
third wheels are on the front axle and the second and fourth wheels are on the rear axle. The
second and fourth wheels are behind the first and third wheels respectively. Figs. 13 and 14 show
the identified wheel loads with different sensor sets using the exact solution and finite element
methods, respectively, as the model car moves along Rail 3. Table 6 shows the correlation
coefficients between the reconstructed and measured strains at 3/8a. The sampling frequency is
200Hz, and 50 terms of the orthogonal functions are used in the FEM.
These two methods are effective to identify dynamic wheel loads along the center line from

bridge strains, and acceptable results can be obtained as indicated by the correlation coefficients in
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Fig. 11. Identification of axle loads along Rail 1 using ESM (–, static forces; –, identified with set I; – –, identified with

set II; y, identified with set III). (a) The first axle load; (b) the second axle load and (c) the resultant load.

X.Q. Zhu, S.S. Law / Journal of Sound and Vibration 268 (2003) 855–879872



Table 6. The identified force time histories from sensor set II are nearly the same as those from
sensor sets I or III using the exact solution method, and they are different from each other when
using the finite element method. This also shows that more measured information is needed in
FEM than in ESM in the wheel load identification.
For the results from the exact solution method in Fig. 13, the left wheel loads (the first and

second loads) from sensor set I are larger than those from sensor set III, and the right wheel loads
(the third and fourth loads) from sensor set I are smaller than those from sensor set III. No rolling
motion of the vehicle has been observed in the laboratory test and in the identified forces. Since
there is no spring component in each wheel in the model car and the wheel spacing is very small,
the four wheel loads behave similar to a single moving mass with some pitching effects. Therefore,
this difference in the identified forces can only be due to the proximity of the sensors to the loads,
i.e. sensor set I is close to the left wheel loads and sensor set III is close to the right wheel loads.
For the results from the finite element method in Fig. 14, the front wheel loads (the first and

third loads) vary greatly from using different sensor sets while the rear wheel loads (the second
and fourth loads) are relatively the same from using the sensor sets I, II or III. The identified force
time histories are not consistent.
When all 15 sensors are used, the identified force time histories from both methods are similar

with the FEM results showing larger fluctuations then the ESM results. This observation is the
same as that in the axle load identification shown in Fig. 9.
It may be concluded that the exact solution method is effective to identify accurately loads

moving along the central line of the bridge deck, while the finite element method does not give
consistent results.
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Fig. 12. Identification of axle loads along different rails from sensor set II using ESM (–, static forces; –, Rail 3; – –,

Rail 2; y, Rail 1). (a) The first axle load; (b) the second axle load and (c) the resultant load.
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6.2. Study 5: effect of eccentricities

The sensor sets and the parameters are the same as above. Fig. 15 shows the identified results
from sensor set II using the exact solution method as the model car moves along different rails.
Fig. 16 shows the identified results from sensor set V using the finite element method as the model
car moves along different rails. All measured information is used as the accuracy of the method is
found from previous studies to be dependent on the amount of measured information. The
corresponding correlation coefficients between the reconstructed and measured strain at 3/8a are
also shown in Table 6. Both methods are found effective to identify the dynamic wheel loads along
Rails 2 and 3 based on sensor set II for the ESM and sensor set V for the FEM. Both methods fail
to identify forces along Rail 1 and the reason is given in Study 3 in Section 5.3.

6.3. Study 6: effect of number of modes

The sensor sets and parameters are the same as above. Fig. 17 shows the identified results
from different number of modes using the exact solution method as the model car moves along
the central line (Rail 3). The sensor set II is used in the identification. The identified results
using the finite element method and sensor set V is also used in the identification. The time
histories are similar to those from the exact solution method and are not shown. The correlation
coefficients between the reconstructed and measured strain at 3/8a are listed in Table 7. The
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Fig. 13. Identification of wheel loads along Rail 3 using ESM (–, static forces; –, sensor set I; – –, Sensor set II; y,

Sensor set III). (a) The first wheel load; (b) the second wheel load; (c) the third wheel load and (d) the fourth wheel load.
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Fig. 14. Identification of wheel loads along Rail 3 using FEM (–, static forces; –, Sensor set I; – –, Sensor set II; y,

Sensor set III). (a) The first wheel load; (b) the second wheel load; (c) the third wheel load and (d) the fourth wheel load.

Table 6

Correlation coefficients between reconstructed and measured strain at 3/8a for wheel load identification

Method Sensor Set Average Speed (m/s) Rail Correlation Coefficients

Beam 1 Beam 2 Beam 3 Beam 4 Beam 5

ESM I 0.977 0.960 0.926 0.958 0.944

II 0.976 0.964 0.933 0.961 0.942

III 1.11 3 0.970 0.959 0.930 0.957 0.932

IV 0.969 0.951 0.917 0.948 0.929

V 0.977 0.979 0.956 0.979 0.956

II 1.09 2 0.959 0.980 0.959 0.950 0.975

II 1.09 1 0.153 0.912 0.976 0.984 0.963

FEM I 0.894 0.938 0.921 0.931 0.884

II 0.818 0.827 0.786 0.836 0.811

III 1.11 3 0.820 0.873 0.849 0.875 0.815

IV 0.894 0.912 0.880 0.915 0.889

V 0.911 0.926 0.895 0.930 0.907

II 1.09 2 0.734 0.870 0.895 0.908 0.908

II 1.09 1 0.029 0.406 0.824 0.913 0.906
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Fig. 15. Identification of wheel loads along rails with sensor set II using ESM (–, static forces; –, rail 3; – –, rail 2; y,

rail 1). (a) The first wheel load; (b) the second wheel load; (c) the third wheel load and (d) the fourth wheel load.
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Fig. 16. Identification of wheel loads along rails with sensor set V using FEM (–, static forces; –, rail 3; – –, rail 2;y,

rail 1). (a) The first wheel load; (b) the second wheel load; (c) the third wheel load and (d) the fourth wheel load.
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correlation coefficients are all above 0.89 for both sets of results. The identified force time
histories are approximately the same when different number of the modes is used in the
identification. This shows that the effect of torsional vibration is small when the model car moves
along Rail 3. This also supports the findings in Studies 1, 2 and 4 that the sensors should be
close to the moving loads to pick up the dominating bending modes to have an accurate
identified result.
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Table 7

Correlation coefficients for wheel load identification with different number of modes

Method Sensor set Modes Correlation coefficients

Beam 1 Beam 2 Beam 3 Beam 4 Beam 5

ESM m=3; n=3 0.976 0.964 0.933 0.961 0.942

II m=2; n=2 0.959 0.957 0.924 0.960 0.960

m=1; n=1 0.958 0.957 0.924 0.960 0.960

FEM m=3; n=3 0.911 0.926 0.895 0.930 0.907

V m=2; n=2 0.924 0.928 0.904 0.932 0.920

m=1; n=1 0.923 0.918 0.904 0.932 0.921
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Fig. 17. Identification of wheel loads along Rail 3 using different modes (–, static forces; –, [3;3;3]; —, [2;2;2]; y,

[1;1;1]). (a) The first wheel load; (b) the second wheel load; (c) the third wheel load and (d) the fourth wheel load.
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7. Conclusions

Results obtained from a comprehensive laboratory experiment indicate that a group of forces
moving on top of the model bridge deck can be identified individually or in terms of axle loads
with accuracy. The identified results for individual loads are poorer than those for axle loads.
Both the exact solution method and the finite element method can identify moving loads with a
small eccentricity, but the finite element method requires a lot more of measured information to
have the same accuracy as the exact solution method. Both methods fail to identify loads with a
large eccentricity.
Since the longitudinal bending modes in the experiment are dominating in the responses, the

dynamic loads from the model car can be identified with the bridge deck simplified as an
equivalent beam model.
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Appendix A. Nomenclature

Dx,Dy flexural rigidities in the x and y directions respectively
a, b, h length, width and thickness of the orthotropic plate
e eccentricity of moving load
Dxy torsional rigidity
C damping coefficient of the plate
w(x, y, t) displacement of the orthotropic plate
.w(x, y, t) acceleration responses of the orthotropic plate
ex(x, y, y) strains in the orthotropic plate in x direction
ey(x, y, y) strains in the orthotropic plate in y direction
Wij(x, y) vibration mode shape of the orthotropic plate
r mass density of the orthotropic plate material
pi(t) the ith moving load
#xiðtÞ; #yiðtÞ location of the ith moving load
zt the distance from the neutral plane to the bottom tension surface
Np number of moving loads
Ns number of measuring points
N+1 number of sampling points
qij(t) modal co-ordinate
oij circular frequency in radians per second
Yij(y) mode shape
Y 00

ij ðyÞ second derivatives of Yij(y)
d(x), d(y) dirac function
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l regularization parameter
MM, NN number of vibration modes along x-direction and y-direction, respectively
Mmn modal mass
Hmn(t) impulsive response function
Dt time step
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